If cosƟ+`"cos"^{2}Ɵ` =1,the value of `"sin"^{2}`Ɵ+`"sin"^{4}Ɵ` is
(a) -1
(b) 0
(c) 1
(d) 2
(a) -1
(b) 0
(c) 1
(d) 2
(c) 1
Explanation:
Given,
cosƟ+`"cos"^{2}Ɵ` =1
cosƟ = 1 - `"cos"^{2}Ɵ`
cosƟ = `"sin"^{2}Ɵ`
`"sin"^{2}Ɵ` = cosƟ
Now,
`"sin"^{2}Ɵ` + `"sin"^{4}Ɵ` = cosƟ + `"cos"^{2}Ɵ` = 1
So, the correct answer is option (c)