If cosƟ+`"cos"^{2}Ɵ` =1,the value of `"sin"^{2}`Ɵ+`"sin"^{4}Ɵ` is

(a) -1

(b) 0

(c) 1

(d) 2

(a) -1

(b) 0

(c) 1

(d) 2

(c) 1

**Explanation:**

Given,

cosƟ+`"cos"^{2}Ɵ` =1

cosƟ = 1 - `"cos"^{2}Ɵ`

cosƟ = `"sin"^{2}Ɵ`

`"sin"^{2}Ɵ` = cosƟ

Now,

`"sin"^{2}Ɵ` + `"sin"^{4}Ɵ` = cosƟ + `"cos"^{2}Ɵ` = 1

So, the correct answer is option (c)