The LCM of `2^{3}\times 3^{2}` and `2^{2}\times 3^{3}` is

(a) `2^{3}`

(b) `3^{3}`

(c) `2^{3}\times 3^{3}`

(d) `2^{2}\times 3^{2}`

(b) `3^{3}`

(c) `2^{3}\times 3^{3}`

(d) `2^{2}\times 3^{2}`

(c) `2^{3}\times 3^{3}`

**Explanation:**

= `2^{3}\times 3^{2}` = 2 `\times`2 `\times`2 `\times`3 `\times`3

= `2^{2}\times 3^{3}` = 2 `\times`2 3 `\times`3 `\times`3

LCM = 2 `\times`2 `\times`2 `\times`3 `\times`3 `\times`3

= `2^{3}\times 3^{3}`