The LCM of `2^3` × `3^2` and `2^2` × `3^3` is - Bzziii

The LCM of `2^{3}\times 3^{2}` and `2^{2}\times 3^{3}` is (a) `2^{3}` (b) `3^{3}` (c) `2^{3}\times 3^{3}` (d) `2^{2}\times 3^{2}`
The LCM of `2^{3}\times 3^{2}` and `2^{2}\times 3^{3}` is

(a) `2^{3}`
(b) `3^{3}`
(c) `2^{3}\times 3^{3}`
(d) `2^{2}\times 3^{2}` 




(c) `2^{3}\times 3^{3}`

Explanation:

= `2^{3}\times 3^{2}` = 2 `\times`2 `\times`2 `\times`3 `\times`3

= `2^{2}\times 3^{3}` = 2 `\times`2   3 `\times`3 `\times`3

LCM = 2 `\times`2 `\times`2 `\times`3 `\times`3 `\times`3

`2^{3}\times 3^{3}`






Post a Comment