The LCM of `2^{3}\times 3^{2}` and `2^{2}\times 3^{3}` is
(a) `2^{3}`
(b) `3^{3}`
(c) `2^{3}\times 3^{3}`
(d) `2^{2}\times 3^{2}`
(b) `3^{3}`
(c) `2^{3}\times 3^{3}`
(d) `2^{2}\times 3^{2}`
(c) `2^{3}\times 3^{3}`
Explanation:
= `2^{3}\times 3^{2}` = 2 `\times`2 `\times`2 `\times`3 `\times`3
= `2^{2}\times 3^{3}` = 2 `\times`2 3 `\times`3 `\times`3
LCM = 2 `\times`2 `\times`2 `\times`3 `\times`3 `\times`3
= `2^{3}\times 3^{3}`