The Median of the Following Data is 525. Find the Values of x and y, If the Total Frequency is 100. | Bzziii
The median of the following data is 525. Find the values of `x` and `y`, if the total frequency is 100. Class interval 0-100 100-200 200-300 300-400 400-500 500-600 600-700 700-800 800-900 900-1000 Frequency 2 5 x 12 17 20 y 9 7 4 SOLUTION Median = 525 Median Class = 500 – 600 Class interval Frequency (f) Cumulative frequency (cf) 0-100 2 2 100-200 5 7 200-300 x 7 + x 300-400 12 19 + x 400-500 17 36 + x 500-600 20 56 + x 600-700 y 56 + x + y 700-800 9 65 + x + y 800-900 7 72 + x + y 900-1000 4 76 + x + y N = `\sum` fi = 100 = 76 + x + y = 100 = x + y = 24 ….(i) Median = `1+\frac{\frac{n}{2}-F}{f}\times h` Since, l=500,h=100,f=20,F=36+x and N=100 Therefore, putting the value in the Median formula, we get; x = 9 y = 24 – x (from eq.i) y = 24 – 9 = 15 Therefore, the value of x = 9 and y = 15. 35 36 37.1 37.2 38 Class-10 SEBA Maths Question Paper Solution 2022